Меню Рубрики

При утомлении время рефлекса увеличивается

Время рефлекса.его составляющие компоненты и факторы влияющие на него.

Нейроны и пути прохождения нервных импульсов при рефлекторном акте образуют так называемую рефлекторную дугу: стимул — рецептор-аффектор — нейрон ЦНС — эффектор — реакция.

Рефлекс — это наиболее правильная, чаще всего встречающаяся реакция организма на внешние раздражители.

По типу образования: условные и безусловные

По видам рецепторов: экстероцептивные (кожные, зрительные, слуховые, обонятельные), интероцептивные (с рецепторов внутренних органов) и проприоцептивные (с рецепторов мышц, сухожилий, суставов)

По эффекторам: соматические, или двигательные (рефлексы скелетных мышц), например флексорные, экстензорные, локомоторные, статокинетические и др.; вегетативные внутренних органов — пищеварительные, сердечно-сосудистые, выделительные, секреторные и др.

По биологической значимости: оборонительные, или защитные, пищеварительные, половые, ориентировочные.

По степени сложности нейронной организации рефлекторных дуг различают моносинаптические, дуги которых состоят из афферентного и эфферентного нейронов (например, коленный), и полисинаптические, дуги которых содержат также 1 или несколько промежуточных нейронов и имеют 2 или несколько синаптических переключений (например, флексорный).

По характеру влияний на деятельность эффектора: возбудительные — вызывающими и усиливающими (облегчающими) его деятельность, тормозные — ослабляющими и подавляющими её (например, рефлекторное учащение сердечного ритма симпатическим нервом и урежение его или остановка сердца — блуждающим).

По анатомическому расположению центральной части рефлекторных дуг различают спинальные рефлексы и рефлексы головного мозга. В осуществлении спинальных рефлексов участвуют нейроны, расположенные в спинном мозге. Пример простейшего спинального рефлекса — отдергивание руки от острой булавки. Рефлексы головного мозга осуществляются при участии нейронов головного мозга. Среди них различают бульбарные, осуществляемые при участии нейронов продолговатого мозга; мезэнцефальные — с участием нейронов среднего мозга; кортикальные — с участием нейронов коры больших полушарий головного мозга.

Время рефлекса.

Время рефлекса — время от начала раздражения рецептора до появления ответной реакции организма. Время рефлекса складывается: — из времени возбуждения афферентных и эфферентных образований; — из времени проведения возбуждения по афферентным и эфферентным волокнам; — из времени переключения импульсации в центральных структурах мозга, участвующих в реализации рефлекса.

Время рефлекса зависит также от возбудимости НС в данный момент. При утомлении нервных центров время рефлекса увеличивается.

Продолжительность рефлекса всегда больше, чем время раздражения. Это связано с тем, что возбуждение в нервных центрах циркулирует еще длительное время после действия раздражителя.

Возбуждение от одного нейрона к другому передается как по прямой цепи, так и по боковым замкнутым цепям вставочных нейронов.

4 Нервный центр — совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функци­ональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структурах. Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

2. Иррадиация возбуждения. Особенности структурной организации центральных нейронов, огромное число межнейронных соединений в нервных центрах существенно модифицируют (изменя­ют) направление распространения процесса возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов — иррадиации возбуждения.

3. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

4. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс.

5. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов — в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлекторных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

8. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны.

9. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осу­ществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).

10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инер­тность возбуждения, способность к суммированию возбуждения.

11. Цефализация нервной системы. Основная тенденция в эволюционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС. Этот процесс называется цефализацией управляющей функции нервной системы.

5. Одностороннее проведение возбуждения через синапсы. По нервным волокнам импульсы возбуждения способны распространяться в обе стороны от места раздражения. В центральной же нервной системе они распространяются обычно лишь в одном направлении — только с афферентных нейронов на эфферентные. Это означает, что в ЦНС импульсы передаются лишь с аксона одного нейрона на клеточное тело и дендриты других нейронов и не передаются с дендритов и с тела нервной клетки на подходящие к ним веточки аксона.

Указанная закономерность была впервые установлена в1823 году одновременно двумя исследователями — шотландцем И.Беллом и французским физиологом Ф.Мажанди — и получила название закона Белла-Мажанди, согласно которому афферентные волокна вступают в спинной мозг через задние корешки, а эфферентные волокна покидают спинной мозг через передние корешки.

Одностороннее проведение возбуждения в нервных центрах обусловлено строением синапсов: медиаторы выделяются только концевыми аппаратами аксонов и к медиаторам чувствительна только постсинаптическая мембрана синапса, на которой возникает потенциал действия (возбуждающий или тормозящий). Таким образом, возбуждение в синапсе распространяется от окончаний аксона через медиатор на постсинаптическую мембрану тела нервной клетки, дендрита или вставочного нейрона. В обратном направлении передача возбуждения возможна только в электрическом синапсе, в котором возбуждение от пресимпатической мембраны передается к постсинаптической электрическим путем.

Одностороннее проведение возбуждения — возбуждение передается с афферентного на эфферентный нейрон. Причина: клапанное свойство синапса.

Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр — центральное время рефлекса.

6.Замедленное проведение возбуждения. В основе проведения нервных импульсов по цепочке нейронов лежат два различных механизма: электрический (проведение потенциала действия — ПД — по нервным волокнам) и химический (передача через синапс с помощью медиатора). Первый осуществляется с большой скоростью (до 100—140 м/сек), второй—в тысячу раз медленнее. Замедление проведения связано с затратой времени на процессы, происходящие от момента прихода пресинаптического импульса в синапс до появления в постсинаптической мембране возбуждающих или тормозных потенциалов. Этот интервал называется синаптической задержкой и составляет в мотонейронах и большинстве других клеток Центральной нервной системы примерно 0,3 мсек. В вегетативной нервной системе длительность синаптической задержки больше — не менее 10 мсек. За это время пресинаптический импульс вызывает опорожнение синаптических пузырьков, происходит диффузия медиатора через синаптическую щель, увеличение под его влиянием ионной проницаемости постсинаптической мембраны и возникает постсинаптический потенциал. После этого требуется еще около 1,2 мсек. на развитие возбуждающего постсинаптического потенциала (ВПСП) до максимума, чтобы возник (в случае достижения критического уровня деполяризации) ПД. Таким образом, весь процесс передачи нервного импульса (от ПД одной клетки до ПД следующей клетки) через один синапс занимает примерно 1,5 мсек. При утомлении, охлаждении и ряде других воздействий длительность синаптической задержки возрастает. Если же для осуществления какой-либо реакции требуется участие большого числа нейронов (многих сотен и даже тысяч), то суммарная величина задержки проведения по нервным центрам — так называемое центральное время проведения — может составить десятые доли секунды и даже целые секунды. Поскольку проведение импульсов по нервным волокнам от периферических рецепторов в нервные центры и от нервных центров к исполнительным органам занимает сравнительно небольшое время, общее время от момента нанесения внешнего раздражения до появления ответной реакции организма (латентный период рефлекса) определяется центральным временем проведения. Величина латентного периода рефлекса служит важным показателем функционального состояния нервных центров и широко используется в практике. Латентный период двигательной реакции измеряется от момента подачи сигнала до момента начала движения (или до появления электрической активности соответствующей мышцы). При осуществлении человеком простых движений в ответ на внешние сигналы, например нажимание на кнопку при световом сигнале (рис. 48, А), длительность латентного периода двигательной реакции составляет около 120 – 220 мсек., а при утомлении, недостатке кислорода и пр. она может увеличиваться до 300 – 500 и более миллисекунд. При более сложных движениях, например выполнении фехтовальщиком укола в мишень с выпадом в ответ на световой сигнал, этот период значительно больше – около 300 – 400 мсек. и более (см. рис. 48, Б).

Укорочение латентного периода одной и той же двигательной реакции человека в процессе спортивной тренировки может отражать повышение функционального состояния нервных центров (ускорение проведения) и перестройку нервных цепей, участвующих в передаче нервных импульсов (укорочение проводящего пути).

7. Суммация возбуждения. (от позднелат. summatio — сложение), взаимодействие синап-тич. процессов (возбуждающих и тормозных) на мембране нейрона или мышечной клетки, характеризующееся усилением эффектов раздражения до рефлекторной реакции. Явление С. как характерное свойство нервных центров впервые описано И.. М. Сеченовым в 1868. На системном уровне различают С. пространственную и временную. Пространственная С. обнаруживается в случае одновременного действия неск. пространственно разделённых афферентных раздражений, каждое из к-рых неэффективно для разных рецепторов одной и той же рецептивной зоны. Временная С. состоит во взаимодействии нервных влияний, приходящих с определ. интервалом к одним и тем же возбудимым структурам по одним и тем же нервным каналам. На клеточном уровне такое разграничение видов С. не оправдано, поэтому её наз. пространственно-временной. С. — один из механизмов осуществления координир. реакций организма.

8. Тонус длительное стойкое возбуждение нервных центров и мышечной ткани, не сопровож дающееся утомлением. Тонус нервных центров называется такое состояние тех или иных отделов головного и спинного мозга, при котором они непрерывно посылают импульсы по соответствующим эфферентным нервам, длительно поддерживая определённое функциональное состояние органов и тканей. Наибольшее значение для организма имеет Тонус центров блуждающего нерва и симпатической нервной системы, регулирующих деятельность сердца, Тонус сосудодвигательных центров и др. Под мышечным Тонус понимают длительное напряжение или сокращение мышц, обеспечивающее поддержание определённой позы и положения тела в пространстве (Тонус скелетных мышц), давления в полости пищеварительных органов, мочевого пузыря, матки, а также кровяного давления (Тонус гладких мышц). Различают контрактильный и пластический Тонус При контрактильном Тонус в мышцах, особенно в скелетных, развивается значит, напряжение, при котором усиливается электрическая активность (потенциалы действия мышц) и отмечается некоторое повышение обмена веществ. В мышцах беспозвоночных и некоторых низших позвоночных контрактильный Тонус складывается по типу тетануса, состоящего из очень медленных и редких волн сокращения, накладывающихся друг на друга. В скелетных мышцах позвоночных контрактильный Тонус поддерживается путём попеременных сокращений отдельных мышечных волокон, входящих в состав мышцы. При пластическом Тонус развиваемое мышцей напряжение невелико, но может поддерживаться длительно без утомления и без значительного повышения обмена веществ. При этом мышца приобретает свойство пластичности, т. е. может значительно растягиваться без одновременного увеличения её упругих свойств. Пластический Тонус основан на длительном слитном возбуждении в мышце, впервые изученном и описанном Н. Е. Введенским. Сопротивление растягивающему усилию во время пластического Тонус осуществляется не столько за счёт возрастающей упругости мышцы, сколько за счёт так называемых вязких сопротивлений, т. е. внутреннего трения. После удаления растягивающей силы мышца не укорачивается до исходной величины, а остаётся более или менее удлинённой; для возвращения её к исходной длине необходимо наличие возбуждающего фактора. Тонус скелетных мышц связан с состоянием мотонейронов спинного мозга, которое зависит от импульсов, поступающих как из вышележащих центров, так и от рецепторов мышц и сухожилий (см. Проприорецепторы). Увеличение афферентной импульсации от мышечных веретён повышает активность мотонейронов спинного мозга и является одной из причин усиления рефлекторного Тонус скелетной мускулатуры. Уровень возбудимости некоторых видов мотонейронов, участвующих в поддержании мышечного Тонус, регулируется ретикулярной формацией ствола мозга.

Читайте также:  Лабораторная работа утомление при статической работе цель

В целостном организме мышечный Тонус поддерживается при участии различных отделов центральной нервной системы. Тоническое напряжение мышц измеряют тонометрами. Нарушение нормальной деятельности нервных центров может сопровождаться как усилением Тонус (гипертония), так и ослаблением его (гипотония и атония). Так, при перерезке мозгового ствола на границе между межуточным и средним мозгом у млекопитающих происходит значительное усиление пластического Тонус; при перерезке на уровне среднего мозга возникает резкое усиление контрактильного Тонус, так называемая децеребрационная ригидность. Аналогичные явления, а также атония возникают и при некоторых заболеваниях центральной нервной системы.

9. Трансформация ритма и силы импульсов. Лат. transformatio — преобразование, превращение — одно из свойств проведения возбуждения в центре, заключающееся в способности нейрона изменять ритм приходящих импульсов. Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает серией импульсов. Это обусловлено возникновением длительного возбуждающего постсинаптического потенциала, на фоне которого развивается несколько ликов (спайков). Другой причиной возникновения множественного разряда импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. В нервных центрах может происходить и трансформация силы импульсов: слабые импульсы усиливаются, а сильные ослабевают.

Окклюзия — нарушение проходимости некоторых полых образований в организме (кровеносных и лимфатических сосудов, подпаутинных пространств и цистерн), обусловленное стойким закрытием их просвета на какомлибо участке.

Острые окклюзии артерий — острое нарушение кровообращения дистальнее места окклюзии артерии эмболом или тромбом. Состояние считают неотложным. Проксимальнее и дистальнее участка окклюзии нарушается нормальный ток кров, что приводит к дополнительному тромбообразованию. Состояние считают обратимым в течение 4-6 часов от его начала (в англоязычной литературе этот временной промежуток называют «золотым периодом»). По истечении этоговремени глубокая ишемия ведёт к необратимым некротическим изменениям.

Окклюзия вены сетчатки — нарушение кровообращения в центральной вене сетчатки или её ветвях. Преобладающий возраст старше 40-50 лет.

Окклюзия центральной артерии сетчатки — острое нарушение кровообращения в центральной артерии сетчатки или её ветвях. Преобладающий возраст 40-70 лет. Преобладающий пол — мужской.

Дата добавления: 2015-01-29 ; просмотров: 221 | Нарушение авторских прав

источник

Рефлекс — основная форма нервной деятельности. Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом.

Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой.

В рефлекторной дуге различают пять звеньев:

  • рецептор;
  • чувствительное волокно, проводящее возбуждение к центрам;
  • нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные;
  • двигательное волокно, несущее нервные импульсы на периферию;
  • действующий орган — мышца или железа.

Любое раздражение — механическое, световое, звуковое, химическое, температурное, воспринимаемое рецептером, трансформируется (преобразуется) или, как теперь принято говорить, кодируется рецептором в нервный импульс и в таком виде по чувствительным волокнам направляется в центральную нервную систему. При помощи рецепторов организм получает информацию обо всех изменениях, происходящих во внешней среде и внутри организма.

Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности.

Вся нервная деятельность, как бы она не была сложна, складывается из рефлексов различной степени сложности, т.е. она является отраженной, вызванной внешним поводом, внешним толчком.
Из клинической практики: в клинике С.П. Боткина наблюдали больного, у которого из всех рецепторов тела функционировали один глаз и одно ухо. Как только больному закрывали глаз и затыкали ухо, он засыпал.

В опытах В.С. Галкина собаки, у которых путем операции одновременно были выключены зрительные слуховые и обонятельные рецепторы, спали по 20-23 ч в сутки. Пробуждались они только под влиянием внутренних потребностей или энергичного воздействия на кожные рецепторы. Следовательно, центральная нервная система работает по принципу рефлекса, отражения, по принцмпу стимул — реакция.

Рефлекторный принцип нервной деятельности был открыт великим французским философом, физиком и математиком Рене Декартом более 300 лет назад.

Время, прошедшее от момента нанесения раздражения до ответа на него, называется временем рефлекса. Оно слогается из времени, необходимово для возбуждения рецепторов, проведения возбуждения по чувствительным волокнам, по центральной нервной системе, по двигательным волокнам, и, наконец, латентного (скрытого) периода возбуждения рабочего органа. Большая часть времени уходит на проведение возбуждения через нервные центры — центральное время рефлекса.

Время рефлекса зависит от силы раздражения и от возбудимости центральной нервной системы. При сильном раздражении оно короче, при снижении возбудимости, вызванном, например, утомлением, время рефлекса увеличивается, приповышении возбудимости значительно уменьшается.

Каждый рефлекс можно вызвать только с определенного рецептивного поля. Например, рефлекс сосания возникает при раздражении губ ребенка; рефлекс сужения зрачка — при ярком свете (освещении сетчатки глаза) и т.д.

Каждый рефлекс имеет свою локализацию (место расположения) в центральной нервной системе, т.е. тот ее участок, который необходим для его осуществления. Например, центр расширения зрачка — в верхнем грудном сегменте спинного мозга. При разрушении соответствующего отдела рефлекс отсутствует.

Только при целостности центральной нервной системы сохраняется все совершенство нервной деятельности. Нервным центром называется совокупность нервных клеток, расположенных в различных отделах центральной нервной системы, необходимая для осуществления рефлекса и достаточная для его регуляции.

Казалось бы, что возбуждение, возникшее в центральной нервной системе, может беспрепятственно распространяться во всех направлениях и охватывать все нервные центры. В действительности, этого не происходит. В центральной нервной системе, кроме процесса возбуждения, одновременно возникает процесс торможения, выключающий те нервные центры, которые могли бы мешать или препятствовать осуществлению какого-либо вида деятельности организма, например сгибанию ноги.

Возбуждением называют нервный процесс, который либо вызывает деятельность органа, либо усиливает существующую.

Под торможением понимают такой нервный процесс, который ослабляет либо прекращает деятельность или препятствует ее возникновению. Взаимодействие этих двух активных процессов лежит в основе нервной деятельности.

Процесс торможения в центральной нервной системе был открыт в 1862 г. И. М. Сеченовым. В опытах на лягушках он делал поперечные разрезы головного мозга на различных уровнях и раздражал нервные центры, накладывая на разрез кристаллик поваренной соли. При этом обнаруживалось, что при раздражении промежуточного мозга наступает угнетение или полное торможение спинномозговых рефлексов: лапка лягушки, погруженная в слабый раствор серной кислоты, не отдергивалась.

Значительно позже английский физиолог Шеррингтон открыл, что процессы возбуждения и торможения участвуют в любом рефлекторном акте. При сокращении группы мышц тормозятся центры мышц-антагонистов. При сгибании руки или ноги центры мышц-разгибателей затормаживаются. Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении мышц- антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты.

При раздражении чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через тормозные клетки Реншоу — к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых — торможения. В ответ возникает координированный, согласованный рефлекторный акт — сгибательный рефлекс.

В центральной нервной системе под влиянием тех или иных причин может возникнуть очаг повышенной возбудимости, который обладает свойством притягивать к себе возбуждения с других рефлекторных дуг и тем самым усиливать свою активность и тормозить другие нервные центры. Это явление носит название доминанты.

Доминанта относится к числу основных закономерностей в деятельности центральной нервной системы. Она может возникнуть под влиянием различных причин: голода, жажды, инстинкта самосохранения, размножения. Состояние пищевой доминанты хорошо сформулировано в русской пословице: «Голодной куме все хлеб на уме». У человека причиной доминанты может быть увлеченность работой, любовь, родительский инстинкт. Бсли студент занят подготовкой к экзамену или читает увлекательную книгу, то посторонние шумы не мешают ему, а даже углубляют его сосредоточенность, внимание.

Весьма важным фактором координации рефлексов является наличие в центральной нервной системе известной функциональной субординации, т. е. определенного соподчинения между ее отделами, возникающего в процессе длительной эволюции. Нервные центры и рецепторы головы как «авангардной» части тела, прокладывающей путь организму в окружающей среде, развиваются быстрее. Высшие отделы центральной нервной системы приобретают способность изменять активность и направление деятельности нижележащих отделов.

Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, «тем в большей степени высший отдел является распорядителем и распределителем деятельности организма» (И. П. Павлов).

У человека таким «распорядителем и распределителем» является кора больших полушарий головного мозга. Нет функций в организме, которые бы не поддавались решающему регулирующему влиянию коры.

Схема 1. Распространение (направление показано стрелками) нервных импульсов по простой рефлекторной дуге (увеличить рисунок)

1 — чувствительный (афферентный) нейрон; 2 — вставочный (кондукторный) нейрон; 3 — двигательный (эфферентный) нейрон; 4 — нервные волокна тонкого и клиновидного пучков; 5 — волокна корково-спинномозгового пути.

источник

Трансформацией ритма в нервном центре

152. ПОД ТРАНСФОРМАЦИЕЙ РИТМА ВОЗБУЖДЕНИЯ ПОНИМАЮТ

1) направленное распространение возбуждения в ЦНС

2) циркуляцию импульсов в нейронной ловушке

3) беспорядочное распространение возбуждения в ЦНС

Увеличение или уменьшение числа импульсов

153. С УВЕЛИЧЕНИЕМ СИЛЫ РАЗДРАЖИТЕЛЯ ВРЕМЯ РЕФЛЕКТОРНОЙ РЕАКЦИИ

Уменьшается

154. ПРИ УТОМЛЕНИИ ВРЕМЯ РЕФЛЕКСА

Увеличивается

155. В ОСНОВЕ РЕФЛЕКТОРНОГО ПОСЛЕДЕЙСТВИЯ ЛЕЖИТ

1) пространственная суммация импульсов

2) трансформация импульсов

3) последовательная суммация импульсов

Циркуляция импульсов в нейронной ловушке

156. ПОД ДИФФУЗНОЙ ИРРАДИАЦИЕЙ ВОЗБУЖДЕНИЯ ПОНИМАЮТ

1) направленное распространение возбуждения по ЦНС

2) изменение ритма возбуждения

3) замедленное распространение возбуждения по ЦНС

Ненаправленное распространение возбуждения по ЦНС

Читайте также:  Лабораторная работа утомление при статической и динамической работе вывод

157. ПОВЫШАЮЩАЯ ТРАНСФОРМАЦИЯ РИТМА ВОЗБУЖДЕНИЯ В НЕРВНОЙ СИСТЕМЕ ОБУСЛОВЛЕНА

1) дисперсией возбуждений и низкой лабильностью нервных центров

2) синаптической задержкой

3) утомляемостью нервных центров и дисперсией возбуждений

Дисперсией и мультипликацией возбуждений

158. РОЛЬ СИНАПСОВ ЦНС ЗАКЛЮЧАЕТСЯ В ТОМ, ЧТО ОНИ

1) являются местом возникновения возбуждения в ЦНС

2) формируют потенциал покоя нервной клетки

Передают возбуждение с нейрона на нейрон

159. В РЕФЛЕКТОРНОЙ ДУГЕ С НАИМЕНЬШЕЙ СКОРОСТЬЮ ВОЗБУЖДЕНИЕ РАСПРОСТРАНЯЕТСЯ ПО ПУТИ

Центральному

160. ЗА ВРЕМЯ РЕФЛЕКСА ПРИНИМАЮТ ВРЕМЯ ОТ НАЧАЛА ДЕЙСТВИЯ РАЗДРАЖИТЕЛЯ ДО

1) конца действия раздражителя

2) достижения полезного приспособительного результата

Появления ответной реакции

161. В ОСНОВЕ ОККЛЮЗИИ ЛЕЖАТ ПРОЦЕССЫ

Конвергенции

162. ВРЕМЯ РЕФЛЕКСА ЗАВИСИТ ПРЕЖДЕ ВСЕГО

1) от иррадиации возбуждения

2) от физических и химических свойств эффектора

3) от физиологических свойств эффектора

От силы раздражителя и функционального состояния ЦНС

163. ВОЗБУЖДЕНИЕ В НЕРВНОМ ЦЕНТРЕ РАСПРОСТРАНЯЕТСЯ

1) от эфферентного нейрона через промежуточные к афферентному

2) от промежуточных нейронов через эфферентный нейрон к афферентному

3) от промежуточных нейронов через афферентный нейрон к эфферентному

От афферентного нейрона через промежуточные к эфферентному

164. РОЛЬ ЗВЕНА ОБРАТНОЙ АФФЕРЕНТАЦИИ ЗАКЛЮЧАЕТСЯ В ОБЕСПЕЧЕНИИ

1) морфологического соединения нервного центра с эффектором

2) распространения возбуждения от афферентного звена к эфферентному

Оценки результата рефлекторного акта

165. НЕРВНАЯ КЛЕТКА ВЫПОЛНЯЕТ ВСЕ ФУНКЦИИ, КРОМЕ

Инактивации медиатора

166. ОСНОВНОЙ ФУНКЦИЕЙ ДЕНДРИТОВ ЯВЛЯЕТСЯ

1) проведение возбуждения от тела клетки к эффектору

Проведение возбуждения к телу нейрона

167. В ЕСТЕСТВЕННЫХ УСЛОВИЯХ ПОТЕНЦИАЛ ДЕЙСТВИЯ В НЕЙРОНЕ ВОЗНИКАЕТ

В начальном сегменте аксона

168. ПРОВЕДЕНИЕ ВОЗБУЖДЕНИЯ В ЦНС ОСУЩЕСТВЛЯЕТСЯПРЕИМУЩЕСТВЕННО С УЧАСТИЕМ СИНАПСОВ

169. ИНТЕГРАТИВНАЯ ДЕЯТЕЛЬНОСТЬ НЕЙРОНА ЗАКЛЮЧАЕТСЯ В

1) посттетанической потенциации

2) связи с другими нейронами посредством отростков

Суммации всех постсинаптических потенциалов, возникающих на мембране нейрона

170. ВОЗБУЖДАЮЩИЙ ПОСТСИНАПТИЧЕСКИЙ ПОТЕНЦИАЛ ВОЗНИКАЕТ ПРИ ЛОКАЛЬНОЙ

Деполяризации

171. ВОЗБУЖДАЮЩИЙ ПОСТСИНАПТИЧЕСКИЙ ПОТЕНЦИАЛ РАЗВИВАЕТСЯ В РЕЗУЛЬТАТЕ ОТКРЫТИЯ НА ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЕ КАНАЛОВ ДЛЯ ИОНОВ

172. ВОЗБУЖДАЮЩИЙ ПОСТСИНАПТИЧЕСКИЙ ПОТЕНЦИАЛ — ЭТО ЛОКАЛЬНЫЙ ПРОЦЕСС ДЕПОЛЯРИЗАЦИИ, РАЗВИВАЮЩИЙСЯ НА МЕМБРАНЕ

Постсинаптической

173. С БОЛЕЕ ВЫСОКОЙ ЧАСТОТОЙ ГЕНЕРИРУЮТ ИМПУЛЬСЫ ТЕ НЕЙРОНЫ, У КОТОРЫХ СЛЕДОВАЯ ГИПЕРПОЛЯРИЗАЦИЯ ДЛИТСЯ

174. КОМПЛЕКС СТРУКТУР, НЕОБХОДИМЫХ ДЛЯ ОСУЩЕСТВЛЕНИЯ РЕФЛЕКТОРНОЙ РЕАКЦИИ, НАЗЫВАЮТ

1) функциональной системой

3) нервно-мышечным препаратом

4) доминантным очагом возбуждения

Рефлекторной дугой

175. ПРИ ДЛИТЕЛЬНОМ РАЗДРАЖЕНИИ КОЖИ ЛАПКИ ЛЯГУШКИ РЕФЛЕКТОРНОЕ ОТДЕРГИВАНИЕ ЛАПКИ ПРЕКРАЩАЕТСЯ ИЗ-ЗА РАЗВИТИЯ УТОМЛЕНИЯ

2) в нервно-мышечных синапсах

в нервном центре рефлекса

176. УВЕЛИЧЕНИЕ ЧИСЛА ВОЗБУЖДЕННЫХ НЕЙРОНОВ В ЦНС ПРИ УСИЛЕНИИ РАЗДРАЖЕНИЯ ПРОИСХОДИТ ВСЛЕДСТВИЕ

1) пространственной суммации

177. РАСПРОСТРАНЕНИЕ ВОЗБУЖДЕНИЯ ОТ ОДНОГО АФФЕРЕНТНОГО НЕЙРОНА НА МНОГИЕ ИНТЕРНЕЙРОНЫ НАЗЫВАЕТСЯ ПРОЦЕССОМ

2) пространственной суммации

178. ОДИН МОТОНЕЙРОН МОЖЕТ ПОЛУЧАТЬ ИМПУЛЬСЫ ОТ НЕСКОЛЬКИХ АФФЕРЕНТНЫХ НЕЙРОНОВ В РЕЗУЛЬТАТЕ

2) последовательной суммации

Конвергенции

179. УСИЛЕНИЕ РЕФЛЕКТОРНОЙ РЕАКЦИИ НЕ МОЖЕТ ВОЗНИКНУТЬ В РЕЗУЛЬТАТЕ

1) торможения рефлекса-антагониста

2) посттетанической потенциации

3) последовательной суммации

180. ПОСТТЕТАНИЧЕСКАЯ ПОТЕНЦИАЦИЯ ЗАКЛЮЧАЕТСЯ В УСИЛЕНИИ РЕФЛЕКТОРНОЙ РЕАКЦИИ НА РАЗДРАЖЕНИЕ, КОТОРОМУ ПРЕДШЕСТВОВАЛО

1) торможение нервного центра

2) пространственная суммация импульсов

3) понижающая трансформация импульсов

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9624 — | 7393 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

478. Явление изменения количества нервных импульсов в эфферентных волокнах рефлекторной дуги по сравнению с афферентными обусловлено трансформацией ритма в нервном центре.

479. Под трансформацией ритма возбуждения понимают увеличение или уменьшение числа импульсов.

480. С увеличением силы раздражения время рефлекторной реакции уменьшается.

481. При утомлении время рефлекса увеличивается.

482. В основе рефлекторного последействия лежит циркуляция импульсов в нейронной ловушке.

483. Под диффузной иррадиацией возбуждения понимают беспорядочное распространение возбуждения по ЦНС.

484. Повышающую трансформацию ритма возбуждения в нервной системе обусловливают процессы дисперсия и мультипликация возбуждений.

485. Роль синапсов ЦНС заключается в том, что они передают возбуждение с нейрона на нейрон.

486. В рефлекторной дуге с наименьшей скоростью возбуждение распространяется по центральному пути.

487. За время рефлекса принимают время от начала действия раздражителя до появления ответной реакции.

488. В основе окклюзии лежат процессы конвергенции.

489. Время рефлекса зависит прежде всего от силы раздражителя и функционального состояния ЦНС.

490. Возбуждение в нервном центре распространяется от афферентного нейрона через промежуточные к эфферентному.

491. Роль звена обратной афферентации заключается в обеспечении оценки результата рефлекса.

492. Нервная клетка выполняет все функции, кроме инактивации медиатора.

493. Основной функцией дендритов является передача информации к телу нейрона.

494. Потенциал действия в нейроне возникает в начальном сегменте аксона.

495. Проведение возбуждения в ЦНС осуществляется преимущественно с участием химических синапсов.

496. Интегративная деятельность нейрона заключается в суммацнн всех постсинаптических потенциалов.

497. Возбуждающий постсинаптический потенциал возникает при локальной деполяризации.

498. Возбуждающий постсинаптический потенциал развивается в результате открытия на постсинаптической мембране каналов для ионов натрия.

499. Возбуждающий постсинаптический потенциал — это локальный процесс деполяризации, развивающийся на постсинаптической мембране.

500. С более высокой частотой генерируют импульсы те нейроны, у которых следовая гиперполяризация длится 50 мсек.

501. Комплекс структур, необходимых для осуществления рефлекторной реакции, называют рефлекторной дугой.

502. При длительном раздражении кожи лапки лягушки рефлекторное отдергивание лапки прекращается из-за развития утомления в нервном центре рефлекса.

503. Увеличение числа возбужденных нейронов в ЦНС при усилении раздражения происходит благодаря иррадиации.

504. Возбуждение от одного афферентного нейрона передается на многие мотонейроны благодаря явлению иррадиации.

505. Один мотонейрон может получать импульсы от нескольких афферентных нейронов благодаря конвергенции.

506. Усиление рефлекторной реакции не может возникнуть в результате окклюзии.

507. Посттетаническая потенциация заключается в усилении рефлекторной реакции на раздражение, которому предшествовало ритмическое раздражение нервного центра.

508. Пространственная суммация импульсов обеспечивается конвергенцией возбуждения.

509. Для нейронов доминантного очага не характерна низкая лабильность.

510. Нервные центры не обладают свойством двустороннего проведения возбуждений.

511. Принцип общего конечного пути в координационной деятельности ЦНС действителен для любого ее отдела.

512. Рецепторное звено рефлекторной дуги выполняет функции воспринимает энергию раздражителя и преобразует ее в нервный импульс.

513. Афферентный нерв рефлекторной дуги осуществляет центростремительное проведение возбуждение от рецепторов к нервному центру.

514. Нервный центр осуществляет анализ и синтез полученной информации.

515. Медиатор тормозного нейрона как правило, на постсинаптической мембране не вызывает гиперполяризацию.

516. Время рефлекса в опыте Сеченова увеличивается.

517. В опыте Сеченова разрез мозга проводится между зрительными буграми и вышележащими отделами.

518. При развитии пессимального торможения мембрана нейрона находится в состоянии устойчивой длительной деполяризации.

519. Явление , при котором возбуждение одной мышцы сопровождается торможением центра мышцы-антагониста, называется реципрокным торможением.

520. Торможение было открыто Сеченовым при раздражении зрительных бугров.

521. К специфическим тормозным нейронам относятся клетки Пуркинье н Реншоу.

522. Значение реципрокного торможения заключается в обеспечении координации работы центров-антагонистов.

523. Возникновение ВПСП определяют ионы натрия.

524. Возникновение пессимального торможения вероятно при увеличении частоты импульсов.

525. Пресинаптическое торможение развивается в синапсах аксо-аксональных.

526. Механизм пресинаптического торможения связан с длительной деполяризацией.

527. С точки зрения бинарно-химической теории процесс торможения возникает в результате функционирования специальных синапсов, использующих тормозные медиаторы.

528. Торможение — это процесс, препятствующий возникновению или ослабляющий уже возникшее возбуждение.

529. Явление центрального торможения было открыто Сеченовым И.М.

530. В работе нервных центров торможение необходимо для охраны, регуляции и координации функций.

531. Диффузная иррадиация может быть прекращена в результате торможения.

532. О развитии торможения в опыте Сеченова на лягушке судят по изменению времени спинального рефлекса.

533. Сокращение мышц-сгибателей при одновременном расслаблении мышц- разгибателей возможно в результате реципрокного торможения.

534. Торможение нейронов собственными импульсами, поступающими по коллатералям аксона к тормозным клеткам, называют возвратным.

535. С помощью тормозных вставочных клеток Реншоу осуществляется возвратное торможение.

536. Торможение мотонейронов мышц- антагонистов при сгибании и разгибании конечностей называют реципрокным.

537. При сгибании конечности вставочные тормозные нейроны центра мышц-разгибателей заторможены.

538. Тормозной эффект синапса, расположенного вблизи аксонного холмика, по сравнению с другими участками нейрона более сильный.

539. Развитию торможения нейронов способствует гиперполяризация мембраны аксонного холмика.

540. По своему механизму постсинаптическое торможение может быть и де- и гиперполяризованным.

541. По своему механизму пресинаптическое торможение может быть только деполяризованным.

542. После перерезки ниже продолговатого мозга мышечный тонус значительно уменьшится.

543. Контрактильный тонус при перерезке задних корешков спинного мозга исчезнет.

544. При перерезке между красным мозгом и ядром Дейтерса мышечный тонус разгибателей станет выше тонуса сгибателей.

545. При перерезке передних корешков спинного мозга тонус мышц исчезнет.

546. Влияние красного ядра на ядро Дейтерса является тормозным.

547. Черная субстанция на красное ядро оказывает тормозное влияние.

548. Интрафузальные мышечные волокна иннервируются гамма мотонейронами.

549. Экстрафузальные мышечные волокна иннервируются альфа мотонейронами.

550. Интрафузальные мышечные волокна выполняют функцию обеспечения чувствительности «мышечного веретена» к растяжению.

551. Экстрафузальные мышечные волокна выполняют функцию сокращения мышцы.

552. Тела альфа мотонейронов располагаются в передних рогах спинного мозга.

553. Тела гамма мотонейронов располагаются в передних рогах спинного мозга.

554. Возбуждающие импульсы к ядру Дейтерса поступают преимущественно от рецепторов вестибулярного анализатора.

555. Аппарат Гольджи располагается в сухожилиях мышц.

556. Чувствительные окончания первичных афферентов мышечного веретена находятся в ядерной сумке интрафуэальньк волокон.

557. Быстрое (фазное) движение обеспечивают белые мышечные волокна.

558. Медленное тоническое движение обеспечивают красные мышечные волокна.

559. В рецепции состояния мышцы участвуют мышечные волокна интрафузальные.

560. Возбуждение гамма мотонейронов приведет к сокращению интрафузальных мышечных волокон.

561. Возбуждение рецепторов Гольджи приведет к расслаблению экстрафузальных мышечных волокон.

562. Возбуждение альфа мотонейронов приведет к сокращению экстрафузальных мышечных волокон.

563. Рефлексы, возникающие для поддержании позы при движении, называются статокинетическими.

564. Слабый мышечный тонус наблюдается в эксперименте у спинального животного

565. Повышение мышечного тонуса мышц разгибателей наблюдается у животного бульбарного.

566. При недостаточности мозжечка не наблюдается потеря сознания.

567. Для животных с децеребральной ригидностью не характерно резкое понижение тонуса мышц-разгнбателей.

568. В спинном мозге не замыкаются дуги выпрямительных рефлексов.

569. Симпатический отдел автономной нервной системы осуществляет функции: .активирует деятельность мозга, мобилизует защитные и энергетические ресурсы организма; нервные волокна иннервируют все органы и ткани, в т.ч. и клетки самой нервной системы.

570. Парасимпатический отдел автономной нервной системы осуществляет функции: обеспечивает сохранение гомеостаза возбуждения или торможения регулируемых им органов; нервные волокна не иннервируют скелетные мышцы, матку ,ЦНС и большую часть кровеносных сосудов.

571. Метасимпатический отдел автономной нервной системы осуществляет функции: обеспечивает гомеостаз и управление работой внутренних органов посредством структур, расположенных в нервных узлах самих органов.

572. По механизму передачи возбуждения синапсы бывают химические, электрические и смешанные.

573. Синапсы по функции бывают возбуждающие и тормозные.

574. В основе деятельности ЦНС лежит рефлекторный процесс.

575. Нейроглия выполняет следующие функции: трофическую,, барьерную , фагоцитарную, миэлино- образующую и опорную.

576. По месту замыкания рефлексы бывают мезенцефальные, спинальные, бульбарные, и др.

577. Наличием синапсов в ЦНС обусловлены свойства нервных центров: одностороннее проведение и замедление проведения.

578. Главным образом последействие обусловлено суммацией следовой деполяризации, циркуляцией возбуждения по замкнутым нервным сетям и высокой возбудимостью аксонного холмика.

579. Последействие проявляется в том, что возбуждение продолжается после прекращения раздражения

580. Время сухожильных рефлексов равно 0,01 -0,02 мсек.

581. Явление суммацнн возбуждений в нервных центрах впервые было описано И.М. Сеченовым.

582. Последовательная суммация наблюдается при нанесении на один и тот же рецептор нескольких подпороговых импульсов, следующих друг за другом через короткие интервалы времени.

583. Рецептивное поле — это совокупность рецепторов, раздражение которых вызывает один и тот же рефлекс.

584. Пространственная суммация происходит благодаря возбуждению на мотонейроне нескольких синапсов и суммированию их ВПСП.

Читайте также:  Лаб работа утомление при статической работе

585. Морфологическим субстратом иррадиации возбуждения является ветвление многократно дихотомирующих отростков и наличие большого количество вставочных нейронов.

586. Основные принципы распространения возбуждения в ЦНС: иррадиация, мультипликация, дивергенция и конвергенция возбуждения.

587. Иррадиация возбуждения в нервных центрах зависит от силы раздражителя и от функционального состояния нервных центров.

588. Явление облегчения наблюдается когда соседние нейронные, пулы перекрываются периферической каймой.

589. Виды центрального торможения: пресинаптическое, пессимальное, посттетаническое (вслед за возбуждением) и постсинаптическое.

590. Тормозный постсинаптический потенциал обусловлен повышением проницаемости постсинаптической мембраны для ионов К и Cl.

591. Пессимальное торможение обусловлено сильной деполяризацией постсинаптической мембраны и снижением ее проницаемости для ионов Na.

592. Торможение вслед за возбуждением (посттетаническое) обусловлено сильной следовой деполяризацией мембраны.

593. Принципы координационной деятельности НДС: реципрокность, обратная связь, общий конечный путь, доминанта.

594. Цепными рефлексы называют, когда один рефлекторный акт обусловливает возникновение другого.

595. Реципрокность обеспечивается следующими механизмами: последовательная и одновременная индукция, наличием тормозных синапсов, образуемых аксонами нервных клеток на нейронах – антагонистах, постсинаптическим торможением

596. Доминантному очагу присущи следующие черты: повышенная возбудимость, способность к суммированию возбуждения, способность тормозить другие рефлексы, высокая стойкость возбуждения.

597. При участии передних бугров четверохолмия осуществляются зрительные ориентировочные рефлексы.

598. Ядра зрительных бугров функционально делятся на специфические и неспецифические.

599. Таламус выполняет функции: перерабатывает информацию, поступающую от всех рецепторов организма; является центром болевой чувствительности, в котором формируется ощущение боли; принимает участие в формировании ощущений, влечений, эмоциональных состояний.

600. Последовательность передачи возбуждения в рефлекторной дуге: афферентная часть, центральная часть, эфферентная часть.

601. Химические синапсы, в отличие от электрических, характеризуются наличием синаптической задержки, наличием одностороннего проведения и эффективной передачей как возбуждения, так и торможения.

602. Для получения явления децеребрационной ригидности необходимо произвести перерезку между средним и продолговатым мозгом.

603. Симптомы нарушения двигательной функции при удалении мозжечка: атония , астазия, атаксия, астения.

604. Медиаторы, оказывающие тормозное влияние: глицин, гамма — аминомасляная кислота, вещество Р.

605. Псевдо-униполярные нейроны, относятся к афферентным нейронам.

606. В постсинаптической мембране при постсинаптическом торможении происходи гиперполяризация.

607. Пространственная суммация обеспечивается конвергенцией синаптических влияний.

608. Закон Белла-Мажанди доказывается тем, что при перерезке передних корешков на одной стороне происходит полное выключение двигательных реакций, но чувствительность этой стороны сохраняется, а при перерезке задних корешков наблюдается выключение чувствительности.

609. Признаки, характерные для статокинетических рефлексов, в отличие от статических: большая сложность, наличие резких фазных ответов, наличие моносинаптических связей, меньшая скорость реакции.

610. При поражении полосатого тела наблюдаются гиперкинезы.

611. При поражении бледного шара наблюдаются гиперкинезы.

612. Нейросекреторную функцию выполняет гипоталамус.

613. В лимбическую систему мозга входят образования: поясная извилина, гиппокамп, мамиллярные тела, миндалина.

614. Лимбическая система выполняет функции: участвует в формировании мотиваций и эмоций; принимает участие в процессах обучения и памяти.

615. Высший отдел регуляции вегетативной нервной системы локализуется в гипоталамусе.

616. Высший центр регуляции гомеостаза локализуется в гипоталамусе.

617. Низший отдел вегетативной нервной системы локализуется в спинном мозге.

618. ЦНС образуют спинной и головной мозг.

619. Один нейрон, как правило, имеет синаптические связи с тысячами других нейронов.

620. Нервная система обеспечивает связь организма с внешней средой.

621. ЦНС обладает трофической функцией.

622. В основе рефлекторного последействия лежит циркуляция импульсов в замкнутых нейронных цепях.

623. Время рефлекса зависит прежде всего от количества синапсов в рефлекторной дуге.

624. Посттетаническая потенциация заключается в усилении рефлекторной реакции на раздражение, которому предшествовало ритмическое раздражение нервного центра.

625. Принцип общего конечного пути в координационной деятельности ЦНС действителен для любого отдела ЦНС.

626. Пессимальное торможение возникает при увеличении частоты импульсов.

627. Процесс первичного торможения возникает в результате функционирования специальных тормозных нейронов.

628. Союзными называют рефлексы, если один рефлекс усиливает другой.

629. Ритмическими называют рефлексы, при которых последовательно чередуются одни и те же акты.

630. Высший центр координации всех двигательных актов, находящийся под контролем двигательной коры называется мозжечком.

631. Мозжечок принимает участие в регуляции вегетативных (не двигательных) актов.

632. При поражении мозжечка могут отмечаться такие нарушения двигательной сферы, как дизэквилибрия, астения, дистония, атаксия, дизартрия.

633. Дизэквилибрия при поражениях мозжечка – это нарушение равновесия .

634. Астения при поражениях мозжечка – это быстрая утомляемость.

635. Дистония при поражениях мозжечка – это диспропорциональность мышечного тонуса.

636. Дизартрия при поражениях мозжечка – это расстройство речи.

637. Атаксия при поражениях мозжечка – это нарушение величины, скорости и направления движений.

638. Диадохокинез при поражениях мозжечка проявляется невозможностью быстро и точно выполнять симметричные движения.

639. Мозжечок не является органом равновесия.

640. Дефицит функций мозжечка при его поражениях в значительной мере компенсирует кора головного мозга.

641. Зрительные бугры являются высшими подкорковыми чувствительными центрами.

642. Таламус перерабатывает информацию, поступающую от всех рецепторов, является высшим подкорковым центром болевой чувствительности, в котором формируется ощущение боли, принимает участие в формировании ощущений, влечений, эмоциональных состояний.

643. Специфические ядра таламуса, получая чувствительную информацию. от определенного вида рецепторов, адресуют ее в корковые отделы соответствующего анализатора.

644. При возбуждении ядер задней доли гипоталамуса развиваются симпатические функциональные эффекты.

645. Раздражение ядер передней доли гипоталамуса вызывает сужение просвета бронхов, угнетение ЧСС.

646. В гипоталамусе находятся центры всех обмена веществ.

647. Лимбической системе не свойственна функция координация сложных двигательных актов.

648. Главную роль в осуществлении двигательных реакций у высших млекопитающих сразу после рождения играют подкорковые базальные ядра.

649. Главную роль в научении человека ходить играет кора головного мозга.

650. Освоение двигательного рефлекторного акта корой головного мозга человека приводит автоматизации двигательного акта.

651. Центрами, осуществляющими наиболее сложные автоматические движения у человека, являются подкорковые базальные ядра.

652. Двигательные мотонейроны коры головного мозга оказывают тормозное действие на полосатое тело.

653. Полосатое тело тормозит бледный шар.

654. Бледный шар тормозит красное ядро среднего мозга.

655. Кора мозга в зависимости от ее функциональной организации подразделяется на сенсорную, двигательную, ассоциативную.

656. Первичные соматосенсорные зоны коры обеспечивают восприятие простых (элементарных) ощущений.

657. Вторичные соматосенсорные зоны коры обеспечивают формирование ощущений, объединяющих их первичные качества.

658. Вторичные соматосенсорные зоны по отношению к первичным расположены по всей границе первичной зоны.

659. Функциональная асимметрия коры больших полушарий генетически детерминирована.

660. Одностороннее поражение мозга в области задней центральной извилины приведет к одностороннему расстройству всех видов чувствительности.

661. Двустороннее поражение мозга в области задней центральной извилины приведет к полной утрате всех видов чувствительности.

662. В области передней центральной извилины коры мозга находится двигательный корковый центр.

663. В затылочной доле мозга находится зрительный корковый центр.

664. В височной доле коры головного мозга находится слуховой корковый центр.

665. Амплитуда потенциалов, регистрируемых на кожных покровах головы человека при ЭЭГ, колеблется в пределах 5-300 мкВ.

666. Частота потенциалов, регистрируемых с покровов головы человека при ЭЭГ — 0,5-30 Гц.

667. Характеристики альфа ритма ЭЭГ — 8-13 Гц; до 50 мкВ.

668. Характеристики бета ритм ЭЭГ — более 13 Гц;, 20-25 мкВ.

669. Характеристики тета ритм ЭЭГ -4-8 Гц; 100-150 мкВ.

670. Характеристики дельта ритм ЭЭГ — 0,5-3,5 Гц; 200-300 мкВ.

671. Альфа ритм ЭЭГ соответствует состоянию физического и психического покоя.

672. Бета ритм ЭЭГ соответствует умственной работе, эмоциональному напряжению.

673. Тета ритм ЭЭГ соответствует состоянию сна, неглубокого наркоза, гипоксии.

674. Дельта ритм ЭЭГ соответствует состоянию глубокого сна или наркоза.

675. Виды нейронов имеют функциональные особенности: — альфа- мотонейрон — это эфферентный нейрон передних рогов спинного мозга, аксон которых иннервирует экстрафузальные волокна скелетных мышц; — гамма — мотонейрон — это эфферентный нейрон передних рогов спинного мозга, аксон которого иннервирует сократительные элементы интрафузальных волокон; — гигантская клетка Беца — это нейрон моторной зоны коры большого мозга, аксон которого участвует в формировании кортикоспинального или кортикобульбарного трактов; — клетка Реншоу — это тормозный интернейрон спинного мозга, принимающий участие в организации возвратного торможения.

676. Рефлекс Ашнера — Данини. проявляется в урежении сердцебиений при надавливании на глазные яблоки; Геринга- Брейера — в торможении вдоха при растяжении легких; висцеро-висцеральный — в изменении деятельности внутренних органов при. раздражении их интерорецепторов; висцеродермальный — в .изменении деятельности внутренних органов при раздражении определенных участков кожи.

677. Тип нервного волокна и его функциональные особенности: А — это аксоны мотонейронов, иннервирующих скелетные мышцы, и афферентные волокна от мышечных рецепторов, имеющие самую высокую скорость проведения- 120м/сек.; В — это преганглионарные вегетативные волокна со скоростью проведения возбуждения 3-18м/сек; С — это постганглионарные вегетативные волокна и афферентные волокна от некоторых рецепторов тепла, давления, боли, имеющие самую низкую скорость проведения возбуждения (0,5 — 3 м/сек).

678. Согласно принципу Дейла, один нейрон использует во всех своих терминалях только один вид медиатора.

679. По аксону нейрона может распространяться только возбуждение. При суммации ВПСП и ТПСП суммарный итог может быть либо положительным, либо отрицательным.

680. В опыте Сеченова измеряют время спинального рефлекса.

681. Опыт Сеченова проводится на таламической лягушке, потому что для проявления торможения необходимо положить на зрительные бугры кристаллик соли.

682. Торможение спинального рефлекса в опыте Сеченова вызывают раздражением зрительных бугров кристалликом соли.

683. Пресинаптическое торможение очень эффективно при обработке поступающей к нейрону информации, потому что при пресинаптическом торможении возбуждение может быть подавлено избирательно на одном синаптическом входе, не влияя на другие синаптические входы.

684. Рецепторы, чувствительные к серотонину, называют серотонинергическими. Серотонин оказывает и возбуждающее, и тормозное влияние.

685. Для демонстрации роли торможения лягушке вводят стрихнин.

686. Для демонстрации торможения лягушке вводят стрихнин, потому что стрихнин блокирует тормозные синапсы.

687. Для демонстрации роли торможения лягушке вводят стрихнин, потому что после введения стрихнина у лягушки наблюдается диффузная иррадиация возбуждения.

688. Нейрон может находиться в состоянии либо возбуждения, либо торможения.

689. Эфферентный парасимпатический путь имеет двухнейронную структуру. Центры парасимпатического отдела вегетативной нервной системы локализуются в головном мозге.

690. Эфферентный симпатический путь имеет двухнейронную структуру.

691. Преганглионарные симпатические волокна короче постганглионарных. Прегангионарные симпатические нервные волокна относятся к типу В , а постганглинарные — к типу С.

692. Преганглионарные нервные волокна симпатического отдела вегетативной нервной системы относятся к типу В.

693. Интрамуральные эфферентные нейроны сердца — общий конечный путь для парасимпатического и метасимпатического отделов ВНС, потому что они передают возбуждение как от преганглионарных волокон вагуса, так и от интрамуральных вставочных нейронов.

694. Метасимпатическая нервная система осуществляет регуляцию висцеральных органов быстрее , чем симпатическая н парасимпатическая , потому что метасимпатические рефлексы являются местными периферическими.

695. Метасимпатические механизмы регуляции освобождают ЦНС от избыточной информации потому что метасимпатические рефлексы замыкаются вне ЦНС — в интрамуральных ганглиях.

696. Объектом иннервации симпатического отдела вегетативной нервной системы является весь организм. Симпатические нервные волокна образуют сплетения вокруг всех сосудов , приносящих кровь органам и тканям.

697. При одновременном прекращении раздражения симпатических и парасимпатических нервных волокон , идущих к сердцу, эффект симпатического нерва длится дольше, потому что активность холинэстеразы выше активности моноаминоксидазы.

698. В тканях внутренних органов медиатором постганглионарных нервных волокон может быть норадреналин , ацетилхолин , гистамин , потому что действие постганглионарных нервных волокон реализуется через адрено-, холино-, гистаминорецепторы.

699. Норадреналин может вызвать как сужение, так и расширение артериол, потому что эффект норадреналина зависит от типа рецепторов (альфа и бета) , с которыми он взаимодействует.

700. Многие функции внутренних органов (например, двигательная) сохраняются после перерезки симпатических н парасимпатических путей , потому что в стенках этих потому что в стенках этих органов существует метасимпатическая система, включающая нейроны-генераторы.

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.019 с) .

источник